Specific Heat

Specific heat: It is the amount of heat required to change the temperature of unit mass of substance by unit degree temperature.

Classical Theory of Specific heat of a solid

Solid molecules have 6 degrees of freedom (3 translational and 3 vibrational).

According to law of equipartition of energy theorem,
Energy associated with each degree of freedom $=\frac{1}{2} k T$
\therefore Energy associated with one molecule $=6 \mathrm{X} \frac{1}{2} k T$

$$
=3 k T
$$

\therefore Total energy associated with one mole of solid, $\mathrm{U}=3 N_{A} k T$
But $N_{A} k=R$

$$
\begin{equation*}
\left(\because k=\frac{R}{N_{A}}\right) \tag{1}
\end{equation*}
$$

$\therefore \mathrm{U}=3 R T$
Now the specific heat at constant volume,
$C_{V}=\frac{d U}{d T}$
$\therefore C_{V}=\frac{d}{d T}(3 R T)$
$\therefore C_{V}=3 R$

Einstein's Theory of Specific heat of a solid

In Einstein's theory, the crystal lattice structure of a solid comprising N atoms can be treated as an assembly of 3 N distinguishable one-dimensional oscillators. This assumption is based on that each atom is free to move in three dimensions.

The energy level of harmonic oscillator is
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
Where $\hbar=\frac{h}{2 \pi}$ and $n=0,1,2 \ldots \ldots \ldots$
Using Maxwell- Boltzmann distribution of energy
$E=\frac{\int_{0}^{\infty} E_{n} e^{-\frac{E_{n}}{k T}} d E}{\int_{0}^{\infty} e^{-\frac{E_{n}}{k T}} d E}$
$\operatorname{Or} E=\frac{\sum_{0}^{\infty} E_{n} e^{-\frac{E_{n}}{k T}}}{\sum_{0}^{\infty} e^{-\frac{E_{n}}{k T}}}$
$E=\frac{\sum_{0}^{\infty}\left(n+\frac{1}{2}\right) \hbar \omega e^{-\left(n+\frac{1}{2}\right) \frac{\hbar \omega}{k T}}}{\sum_{0}^{\infty} e^{-\left(n+\frac{1}{2}\right) \frac{\hbar \omega}{k T}}}$
Let $x=-\frac{\hbar \omega}{k T}$
Then, $E=\frac{\hbar \omega \sum_{0}^{\infty}\left(n+\frac{1}{2}\right) e^{\left(n+\frac{1}{2}\right) x}}{\sum_{0}^{\infty} e^{\left(n+\frac{1}{2}\right) x}}$
$E=\hbar \omega \frac{\left(\frac{1}{2} e^{\frac{x}{2}}+\frac{3}{2} e^{\frac{3 x}{2}}+\frac{5}{2} e^{\frac{5 x}{2}}+\ldots \ldots\right)}{\left(e^{\frac{x}{2}}+e^{\frac{3 x}{2}}+e^{\frac{5 x}{2}}+\ldots \ldots\right)}$
$E=\hbar \omega \frac{d}{d x}\left[\ln \left(e^{\frac{x}{2}}+e^{\frac{3 x}{2}}+e^{\frac{5 x}{2}}+\ldots . ..\right)\right]$
$E=\hbar \omega \frac{d}{d x}\left[\ln e^{\frac{x}{2}}\left(1+e^{x}+e^{2 x}+\ldots . ..\right)\right]$
Since $\ln \left(1+e^{x}+e^{2 x}+\ldots \ldots.\right)=-\ln \left(1-e^{x}\right)$
$\therefore E=\hbar \omega \frac{d}{d x}\left[\ln e^{\frac{x}{2}}-\ln \left(1-e^{x}\right)\right]$
$E=\hbar \omega \frac{d}{d x}\left[\frac{x}{2}-\ln \left(1-e^{x}\right)\right]$
$E=\hbar \omega\left[\frac{1}{2}+\frac{e^{x}}{1-e^{x}}\right]$
$E=\hbar \omega\left[\frac{1}{2}+\frac{1}{e^{-x}-1}\right]$
since $x=-\frac{\hbar \omega}{k T}$
$\therefore E=\hbar \omega\left[\frac{1}{2}+\frac{1}{e^{\frac{\hbar \omega}{k T}}-1}\right]$
For one mole, the total energy of system is given by
$U=3 N_{A} E=3 N_{A} \hbar \omega\left[\frac{1}{2}+\frac{1}{e^{\frac{\hbar \omega}{k T}}-1}\right]$
\therefore The molar specific heat is given by
$C_{v}=\left(\frac{d U}{d T}\right)_{v}=3 N_{A} \hbar \omega\left[0-\frac{1}{\left(e^{\frac{\hbar \omega}{k T}-1}\right)^{2}}\right] \mathrm{X}-e^{\frac{\hbar \omega}{k T} \frac{\hbar \omega}{k T^{2}}}$
$C_{v}=3 N_{A} k\left(\frac{\hbar \omega}{k T}\right)^{2}\left[\frac{e^{\frac{\hbar \omega}{k T}}}{\left(e^{\frac{\hbar \omega}{k T}}-1\right)^{2}}\right]$
$C_{v}=3 R\left(\frac{\hbar \omega}{k T}\right)^{2}\left[\frac{e^{\frac{\hbar \omega}{k T}}}{\left(e^{\frac{\hbar \omega}{k T}}-1\right)^{2}}\right]$
Here $\frac{\hbar \omega}{k}=\theta_{E}$, called as Einstein temperature
$\therefore C_{v}=3 R\left(\frac{\theta_{E}}{T}\right)^{2}\left[\frac{e^{\frac{\theta_{E}}{T}}}{\left(e^{\frac{\theta_{E}}{T}}-1\right)^{2}}\right]$
Case I: $T \gg \theta_{E}$
$\frac{\theta_{E}}{T} \ll 1$
$\therefore e^{\frac{\theta_{E}}{T}} \rightarrow 1$
$e^{\frac{\theta_{E}}{T}}-1 \approx 1+\frac{1}{2!}\left(\frac{\theta_{E}}{T}\right)^{2}+\ldots . \ldots-1 \approx \frac{\theta_{E}}{T}$
$\therefore C_{v}=3 R\left(\frac{\theta_{E}}{T}\right)^{2}\left[\frac{1}{\left(\frac{\theta_{E}}{T}\right)^{2}}\right]=3 R$

Case I: $T \ll \theta_{E}$
$\frac{\theta_{E}}{T} \gg 1$
$\therefore e^{\frac{\theta_{E}}{T}}-1 \approx e^{\frac{\theta_{E}}{T}}$
$\therefore C_{v}=3 R\left(\frac{\theta_{E}}{T}\right)^{2}\left[\frac{e^{\frac{\theta_{E}}{T}}}{\left(e^{\frac{\theta_{E}}{T}}\right)^{2}}\right]$
$\therefore C_{v}=3 R\left(\frac{\theta_{E}}{T}\right)^{2}\left[\frac{1}{e^{\frac{\theta_{E}}{T}}}\right]$
In above equation, As $T \rightarrow \infty, \frac{\theta_{E}}{T}$ reaches zero faster than $e^{\frac{\theta_{E}}{T}}$. Hence at high temperature $C_{v}=0$

Debye's theory of the specific heat of a solid

The main problem of Einstein theory lies in the assumption that a single frequency of vibration characterizes all 3 N oscillators.

In Debye's theory a solid is viewed as a phonon gas. Vibrational waves are matter waves, each with its own de Broglie wavelength and associated particle. Debay considered the vibration of crystal as whole.

In a vibrating solid, there are three types of waves. After considering one longitudinal and two transverse waves(two states of polarisation),
$f(v) d v=4 \pi\left(\frac{1}{C_{l}^{3}}+\frac{1}{C_{t}^{3}}\right) v^{2} d v$
Where $C_{l} \& C_{t}$ are velocities of longitudinal and transverse wave respectively.

Since each oscillator of the assembly vibrates with its own frequency, and we are considering an assembly of 3 N linear oscillators, there must be an upper limit to the frequency, so that
$3 N=\int_{0}^{v_{m}} f(v) d v$
$\therefore 3 N=\int_{0}^{v_{m}} 4 \pi\left(\frac{1}{C_{l}{ }^{3}}+\frac{1}{C_{t}{ }^{3}}\right) v^{2} d v$
$\therefore 3 N=4 \pi\left(\frac{1}{C_{l}{ }^{3}}+\frac{1}{C_{t}{ }^{3}}\right) \int_{0}^{v_{m}} v^{2} d v$
$\therefore 3 N=4 \pi\left(\frac{1}{C_{l}{ }^{3}}+\frac{1}{C_{t}{ }^{3}}\right) \frac{1}{3} v_{m}{ }^{3}$
$\therefore \frac{9 N}{v_{m}{ }^{3}}=4 \pi\left(\frac{1}{C_{l}^{3}}+\frac{1}{C_{t}^{3}}\right) \ldots \ldots \ldots$
From eqn (1) and (2), we get
$f(v) d v=\frac{9 N v^{2}}{v_{m}{ }^{3}} d v$
According to the quantum theory energy associated with each degree of freedom is

$$
\frac{h \vartheta}{e^{h \vartheta / k T}-1}
$$

The internal energy of the assembly is given by
$U=\int_{0}^{v_{m}} N(v) d v$
$\therefore U=\int_{0}^{v_{m}} f(v) d v \frac{h \vartheta}{e^{h \vartheta / k T}-1}$
$\therefore U=\int_{0}^{v_{m}} \frac{9 N v^{2}}{v_{m}{ }^{3}} \frac{h \vartheta}{e^{h \vartheta / k T-1}} d v$
$\therefore U=\frac{9 N}{v_{m}^{3}} \int_{0}^{v_{m}} \frac{h v^{3}}{e^{h \vartheta / k T}-1} d v$
We know, $C_{v}=\left(\frac{d U}{d T}\right)_{v}$
$\therefore C_{v}=\left(\frac{d U}{d T}\right)_{v}=\frac{9 N}{v_{m}^{3}} \int_{0}^{v_{m}} h v^{3} \frac{d\left(\frac{1}{e^{h \vartheta / k T}-1}\right)}{d T} d v$
$\therefore C_{v}=\frac{9 N}{v_{m}^{3}} \int_{0}^{v_{m}} h v^{3} \frac{\partial\left(\frac{1}{e^{h \vartheta / k T}-1}\right)}{\partial T} d v$
$\therefore C_{v}=\frac{9 N}{v_{m}^{3}} \int_{0}^{v_{m}} h v^{3} \frac{e^{h \vartheta / k T} \frac{h \vartheta}{k T^{2}}}{\left(e^{h \vartheta / k T}-1\right)^{2}} d v$
$\therefore C_{v}=\frac{9 N}{v_{m}^{3}} \int_{0}^{v_{m}} \frac{h^{2}}{k T^{2}} \frac{v^{4} e^{h \vartheta / k T}}{\left(e^{h \vartheta / k T}-1\right)^{2}} d v$
$\therefore C_{v}=\frac{9 N}{v_{m}{ }^{3}} \frac{h^{2}}{k T^{2}} \int_{0}^{v_{m}} \frac{v^{4} e^{h \vartheta / k T}}{\left(e^{h \vartheta / k T}-1\right)^{2}} d v$
Here $\frac{h v_{m}}{k}=\theta_{D}$, called as Debye's temperature
Let $x=\frac{h v}{k T}$ and $x_{m}=\frac{h v_{m}}{k T}=\frac{\theta_{D}}{T}$
$\therefore C_{v}=\frac{9 N}{v_{m}{ }^{3}} \frac{h^{2}}{k T^{2}} \int_{0}^{x_{m}} \frac{\left(\frac{k T}{h} x\right)^{4} e^{x}}{\left(e^{x}-1\right)^{2}}\left(\frac{k T}{h} d x\right)$
$\therefore C_{v}=\frac{9 N}{v_{m}^{3}} X \frac{h^{2}}{k T^{2}} X \frac{k^{5} T^{5}}{h^{5}} \int_{0}^{x_{m}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x$
$\therefore C_{v}=9 N k X \frac{k^{3} T^{3}}{h^{3} v_{m}^{3}} \int_{0}^{x_{m}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x$
$\therefore C_{v}=9 N k\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{x_{m}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x$.
Case I : At high temperature,
$\frac{\theta_{D}}{T} \ll 1, x \ll 1$ and $e^{x} \approx 1$
$\therefore e^{x}-1 \approx x$
$E q^{n}(1)$ becomes,
$\therefore C_{v}=9 N k\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\frac{\theta_{D}}{T}} \frac{x^{4} X 1}{x^{2}} d x$
$\therefore C_{v}=9 N k\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\frac{\theta_{D}}{T}} x^{2} d x$
$\therefore C_{v}=9 N k\left(\frac{T}{\theta_{D}}\right)^{3}\left[\frac{x^{3}}{3}\right]_{0}^{\frac{\theta_{D}}{T}}$
$\therefore C_{v}=3 N k\left(\frac{T}{\theta_{D}}\right)^{3}\left(\frac{\theta_{D}}{T}\right)^{3}$
$\therefore C_{v}=3 N k=3 R \quad \because N k=R$

Case II : At low temperature,
$\frac{\theta_{D}}{T} \gg 1, x \gg 1$
$E q^{n}(1)$ becomes,
$\therefore C_{v}=9 N k\left(\frac{T}{\theta_{D}}\right)^{3}\left[\frac{4}{15} \pi^{2}\right]$
$\therefore C_{v} \propto T^{3}$

